Loss Control Perspectives

Combustible Dust

HOW DOES DUST COMBUST?

- 1. Dust is explosive & airborne
- 2. Concentration of dust is within explosive range
- 3. Distribution of particle size (ease of ignition)
- 4. Atmosphere supports combustion
- 5. Ignition source is present

National Institute for Occupational Safety and Health

TYPES OF COMBUSTIBLE DUST

Chemical Dusts Lactose, Sulfur, Calcium, Acetate, etc.

Agricultural Dusts

Flours, Hops, Gluten, Cotton, etc.

Metal Dusts Aluminum, Zinc, Bronze, etc.

Carbonaceous Dusts Charcoal, Cellulose,

Corn, etc.

Plastic Dusts Epoxy Resin, Poly Ethylene, etc.

Grain dust is 9 times more combustible than coal dust!

FUGITIVE DUST & SECONDARY **EXPLOSIONS**

Fugitive dust is dust that is created and accumulated within a facility. It often trapped becomes in unnoticeable places such as overhead beams and above ceilings.

During a primary explosion, fugitive dust can ignite and produce secondary explosions

oftentimes lt the is secondary explosion that is the most destructive.

NFPA STANDARDS

Standard for the Prevention of Fires & Dust Explosions in the Agricultural and Food Processing Industries

Standard on the **Fundamentals** of Combustible Dust

654

Standard for the **Prevention of Fire & Dust Explosions** from the Manufacturing, **Processing**, and Handling of **Combustible Solids**

The Chemical Safety **Board (CSB)** concluded that between 1980 and 2005 there were 281 **Combustible Dust** Incidents (excluding grain facilities). These resulted in:

OSHA's Grain Handling Study reported that in the last 35 years there were over 500 explosions linked to grain handling dusts. These resulted in:

GOOD HOUSEKEEPING

At the heart of combustible dust safety lies housekeeping. Most combustible dust-related incidents are caused by accumulations of dust over an acceptably safe level. Below are several engineered & human element solutions to prevent combustible dust accidents. **Dust layers as thin** as 1/32 of an inch are hazardous. Safe cleaning of dust is integral to preventing accumulations and explosions. **Utilizing dust** collection Fugitive dust accumulates in high, &ventilation and hard-to-reach places (including Eliminating smoking systems are key on high equipment and beams) and & other human (many are also needs to be collected. element solutions designed for are effective, and exteriors). low-cost. Heat sources should always be separated to prevent ignition. **Proper use of cartridge** actuated tools can help

ignition prevention.

2003 West Pharmaceuticals Fire (Plastics) 6 deaths Imperial Sugar Explosion 2008 14 deaths

718 injuries

119 deaths

Sources https://www.osha.gov/dts/shib/shib073105.html https://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=STANDARDS&p_id=9874 http://www.nfpa.org/codes-and-standards/all-codes-and-standards/list-of-codes-and-standards/detail?code=61&tab=committee https://blog.generalmills.com/2012/05/the-explosion-that-changed-milling/ https://hughesenv.com/history-of-combustible-dust-explosions/

http://www.csb.gov/imperial-sugar-company-dust-explosion-and-fire/

https://www.osha.gov/news/newsreleases/region7/04122012 https://www.osha.gov/Publications/combustibledustposter.pdf

http://www.csb.gov/combustible-dust-hazard-investigation/

